Optimal Asset Allocation with Quadratic Variation as a Risk Measure: A Neural Network Approach
Chang Chen (University of Queensland, Australia)
UQ-Osaka Seminar on Financial Mathematics and Economics 第4回 (University of QueenslandとMMDS金融保険部門共催)
Optimal Asset Allocation with Quadratic Variation as a Risk Measure: A Neural Network Approach
Chang Chen (University of Queensland, Australia)
We determine the optimal decumulation strategy for defined contribution (DC) pension plan, with an Annually Recalculated Virtual Annuity (ARVA) spending rule. Our objective is to maximize expected total withdrawals and minimize quadratic variation, providing investors with better control over risk throughout the investment horizon. We propose a data-driven Neural Network approach to determine the optimal allocation, incorporating realistic constraints such as no leverage and discrete rebalancing, and verify its effectiveness using the PDE method. Compared to a constant weight strategy with the same expected withdrawals, the optimal strategy significantly reduces quadratic variation for most of the time, resulting in a more stable investment path. This conclusion holds under both a parametric market model based on historical data and a bootstrapped market simulation.
講師: | Chang Chen (University of Queensland, Australia) |
---|---|
テーマ: | UQ-Osaka Seminar on Financial Mathematics and Economics 第4回 (University of QueenslandとMMDS金融保険部門共催) |
日時: | 2025年03月27日(木) 13:00-14:00 |
場所: | Zoomによるオンラインセミナー |
参加費: | 無料 |
参加方法: | 参加を希望される方は 関根順 ( ) までご連絡ください。Zoomリンクをお送りしします。 |
アクセス: | 参加方法をご覧ください |
お問い合せ: | 本ウェブサイトの「お問い合せ」のページをご参照ください。 |